Số thực – Các dạng toán và phương pháp giải toán 7 tập 1

Ngày 15/05 năm 2018 | Tin mới | Tag:

Các dạng toán 7 tập 1 A. TÓM TẮT LÍ THUYẾT 1. Số thựcSố hữu tỉ và các số vô tỉ được gọi chung là số thực.Tập hợp các số thực được kí hiểu là R.Nếu a là số thực thì a biểu diễn được dưới dạng số thập phân hữu hạn hoặc vô hạn. Khi đó, ta có thể so sánh...

Rate this post

Các dạng toán 7 tập 1

A. TÓM TẮT LÍ THUYẾT

1. Số thực

  • Số hữu tỉ và các số vô tỉ được gọi chung là số thực.

Tập hợp các số thực được kí hiểu là R.

  • Nếu a là số thực thì a biểu diễn được dưới dạng số thập phân hữu hạn hoặc vô hạn. Khi đó, ta có thể so sánh hai số thực tương tự như so sánh hai số hữu tỉ viết dưới dạng thập phân.
  • Với a, b là hai số thực dương, nếu a > b thì sqrt{a} > sqrt{b} .

2. Trục số thực

  • Mỗi số thực được biểu diễn bởi một điểm trên trục số.
  • Mỗi điểm trên trục số biểu diễn một số thực

3. Các phép toán

Trong tập hợp số thực R, ta cũng định nghĩa các phép toán cộng, trừ, nhân, chia, lũy thừa và khai căn. Các phép toán trong tập hợp số thực cũng có các tính chất như các phép toán trong tập hợp các số hữu tỉ.

B. CÁC DẠNG TOÁN

Dạng 1. CÂU HỎI VÀ BÀI TẬP VỀ ĐỊNH NGHĨA CÁC TẬP HỢP SỐ

Phương pháp giải

  • Nắm vững các kí hiệu tập hợp số:

N : Tập hợp các số tự nhiên.

Q : tập hợp các số hữu tỉ.

R : tập hợp các số thực

Z : tập hợp các số nguyên.

I : tập hợp các số vô tỉ.

  • Năm vững quan hệ các tập hợp số nói trên:

N ⊂ Z ⊂ Q ⊂ R ; I ⊂ R.

Ví dụ 1. (Bài 87 tr.44 SGK)

Điền dấu ∈, ∉, ⊂ thích hợp vào chỗ trống (…):

3 …. Q ; 3 …. R ; 3 …. I ; -2,53 …. Q ;
0,2(35) …. I ; N …. Z ; I …. R.

Giải

3 ∈ Q ; 3 ∈ R ; 3 ∉ I ; -2,53∈ Q ;
0,2(35) ∉ I ; N ∈ Z ; I ⊂ R.

Ví dụ 2. (Bài 88 tr.44 SGK)

Điền vào chỗ trống (…) trong các phát biểu sau:

a) Nếu a là số thực thì a là số … hoặc số …

b) Nếu b là số vô tỉ thì b được viết dưới dạng …

Giải

a) Nếu a là số thực thì a là số hữu tỉ hoặc số vô tỉ.

b) Nếu b là số vô tỉ thì b được viết dưới dạng số thập phân vô hạn không tuần hoàn.

Ví dụ 3. (Bài 89 tr.45 SGK)

Trong các câu sau đây, câu nào đúng, câu nào sai:

a) Nếu a là số nguyên thì a cũng là số thực;

b) Chỉ có số 0 không là số hữu tỉ dương và cũng không là số hữu tỉ âm ;

c) Nếu a là số tự nhiên thì a không phải là số vô tỉ.

Trả lời.

  • Các câu a), c) đúng.
  • Câu b) sai vì ngoài số 0 ra, số vô tỉ cũng không là số hữu tỉ dương và không là số hữu tỉ âm.

Ví dụ 4. (bài 94 tr.45 SGK)

Hãy tìm các tập hợp:

a) Q ∩ I ;

b) R ∩ I.

Giải.

a) Q ∩ I = Ø ;

b) R ∩ I = I.

Dạng 2. SO SÁNH CÁC SỐ THỰC

Phương pháp giải

Cần nắm vững :

  • Với hai số thực x, y bất kì ta luôn có hoặc x = y hoặc x < y hoặc x > y.
  • Các số thực lớn hơn 0 gọi là số thực dương, các số thực nhỏ hơn 0 gọi là số thực âm. Số 0 không là số thực dương cũng không là số thực âm.
  • Việc so sánh các số thực dương làm tương tự như so sánh các số hữu tỉ.
  • Với a, b là hai số thực dương, nếu a > b thì sqrt{a} > sqrt{b}

Ví dụ 5. (Bài 92 tr.45 SGK)

Điền chữ số thích hợp vào chỗ trống (…) :

a) – 3,02 < – 3, … 1

b) – 7,5 … 8 > – 7,513 ;

c) – 0,4 … 854 < – 0,49826 ;

d) -1, … 0765 < – 1,892.

Hướng dẫn

a) – 3,02 < – 301

b) – 7,508 > – 7,513 ;

c) – 0,49854 < – 0,49826 ;

d) -1,90765 < – 1,892.

Ví dụ 6 (Bài 92 tr.45 SGK)

Sắp xếp các số thực: -3,2 ; 1 ; -1/2 ; -7,4 ; 0 ; -1,5.

a) Theo thứ tự từ nhỏ đến lớn.

b) Theo thứ tự từ nhỏ đến lớn theo giá trị tuyệt đói của chúng.

Giải.

a) – 3,2 < -1,5 < -1/2 < 0 < 1 < 7,4.

b) 0 < 1/2 < 1 < 1,5 < 3,2 < 7,4, do đó:

|0| < |-1/2| < |1| < |-1,5| < |-3,2| < |7,4|.

Ví dụ 7.

1. Chứng minh rằng với a, b là hai số thực dương, ta có:

a) Nếu a > b thì a² > b².

b) Nếu a² > b² thì a > b.

2. Chứng minh rằng với a, b là hai số thực dương, ta có:

a) Nếu a > b thì sqrt{a} > sqrt{b}

b) Nếu sqrt{a} > sqrt{b} thì a > b

3. Áp dụng : So sánh (không dùng máy tính)

a) 5 và sqrt{29} ;

b) 3sqrt{2} và 2sqrt{3}

Giải.

1. a) a, b là hai số thực dương nên a + b > 0. Nếu a > b thì a – b > 0.

Xét tích : (a + b)(a – b) = a(a – b) + b(a – b) = a² – ab + ab – b² = a² – b².

Vì a + b > 0, a – b > 0 nên (a + b)(a – b) hay a² – b² > 0. Suy ra: a² > b².

b) Nếu a² > b² thì a² – b² > 0 hay (a + b)(a – b) > 0.

a + b > 0 (vì a > 0, b > 0) suy ra a – b > 0 hay a > b.

2) a, b là hai số thực dương nên a = (sqrt{a} )², b = (sqrt{a} )². Theo câu 1, ta có:

a) Nếu a > b hay (sqrt{a} )² > sqrt{b} )² thì sqrt{a} > latex sqrt{b}.

b) Nếu sqrt{a} > latex sqrt{b} thì (sqrt{a} )² > sqrt{b} )² hay a > b.

3)

a) Theo kết quả ở câu 1, ta có : 29 > 25 hay (sqrt{29} )² > 5² nên (sqrt{29} ) >5.

b) Xét (3sqrt{2} )² và (2sqrt{3} )². Ta có:

(3sqrt{2} )² = 3sqrt{2} .3sqrt{2} = 9.(sqrt{2} )² = 9.2 = 18.

(2sqrt{3} )² = 2sqrt{3} .2sqrt{3} = 4.(sqrt{3} )² = 4.3 = 12.

Vì 18 > 12 hay (3sqrt{2} )² > (2sqrt{3} )² nên suy ra 3sqrt{2} > 2sqrt{3} .

Dạng 3. TÌM SỐ CHƯA BIẾT TRONG MỘT ĐẲNG THỨC

Phương pháp giải.

  • Sử dụng tính chất của các phép toán ;
  • Sử dụng quan hệ giữa các số hạng trong một tổng, một hiệu; quan hệ giữa các thừa số trong một tích, quan hệ giữa số bị chia, số chia và thương trong một phép chia.
  • Sử dụng quy tắc “dấu ngoặc”, “chuyển vế”.

Ví dụ 8. (Bài 93 tr.45 SGK)

Tìm x, biết:

a) 3,2.x + (-1,2).x +2,7 = -4,9 ;

b) (-5,6).x + 2,9.x – 3,86 = – 9,8.

Giải.

a) 3,2. x + (-1,2).x + 2,7 = -4,9

[3,2 + (-1,2)].x + 2,7 = -4,9.

2.x + 2,7 = – 4,9.

2.x = – 4,9 – 2,7

2.x = – 7,6

x = -7,6 : 2

x = -3,8.

b) Làm tương tự câu a). Đáp số : x = 2,2.

Ví dụ 9. Tìm x, biết:

Giải.

Các dạng toán 7 tập 1

Dạng 4. TÍNH GIÁ TRỊ CỦA BIỂU THỨC

Phương pháp giải

  • Thực hiện phối hợp các phép tính cộng, trừ, nhân, chia, lũy thừa, chú ý thực hiện đúng theo thứ tự đã quy định.
  • Rút gọn các phân số khi có thể.
  • Chú ý vận dụng tính chất các phép toán để tính toán được thuận tiện.

Ví dụ 10. (Bài 90 tr.45 SGK)

Thực hiện các phép tính.

Bài giải

Ví dụ 11. (Bài 95 tr.45 SGK)

Giải

Share

  • Tweet
  • Email

Related

Có thể bạn quan tâm