Hướng dẫn giải bài 2.30 trang 66 sách bài tập hình học 12

Ngày 23/02 năm 2019 | Tin mới | Tag:

Bài 2.30 trang 66 sách bài tập hình học 12 Cho đường tròn tâm O bán kính r’. Xét hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD vuông góc...

Rate this post

Bài 2.30 trang 66 sách bài tập hình học 12

Cho đường tròn tâm O bán kính r’. Xét hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD vuông góc với nhau.

Hướng dẫn giải

(h.2.52)

a) Trong mặt phẳng chứa đường tròn tâm O ngoại tiếp tứ giác ABCD ta kẻ đường kính qua O vuông góc với dây cung AC tại I. Ta có IA = IC và OI // BD. Gọi O’ là tâm mặt cầu đi qua 5 đỉnh của hình chóp. Khi đó điểm O’ phải nằm trên trục d của đường tròn ngoại tiếp tứ giác ABCD. Ta có d(ABCD) tại O. Gọi M là trung điểm của cạnh SC. Ta có MI // SA nên MI(ABCD) tại I. Từ M kẻ đường thẳng d’//OI cắt d tại O’. Vì d(SAC) tại M nên ta có O’C = O’S và O’C là bán kính r của mặt cầu ngoại tiếp hình chóp S.ABCD

Ta có

Vì SA không đổi nên ta có VSABCD lớn nhất khi và chỉ khi SABCD lớn nhất. Ta có SABCD=1/2AC.BD trong đó AC và BD là hai dây cung vuông góc với nhau. Vậy AC.BD lớn nhất khi và chỉ khi AC = BD = 2r’ , nghĩa là tứ giác ABCD là một hình vuông.

Có thể bạn quan tâm